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Abstract It has been observed in laboratory experiments that when nonlinear dispersive waves are
forced periodically from one end of undisturbed stretch of the medium of propagation, the signal
eventually becomes temporally periodic at each spatial point. The observation has been confirmed
mathematically in the context of the damped Korteweg-de Vries (KdV) equation and the damped
Benjamin-Bona-Mahony (BBM) equation. In this paper we intend to show the same results hold for
the pure KdV equation (without the damping terms) posed on a finite domain. Consideration is given
to the initial-boundary-value problem

{
ut + ux + uux + uxxx = 0, u(x, 0) = φ(x), 0 < x < 1, t > 0,

u(0, t) = h(t), u(1, t) = 0, ux(1, t) = 0, t > 0.
(∗)

It is shown that if the boundary forcing h is periodic with small ampitude, then the small amplitude

solution u of (∗) becomes eventually time-periodic. Viewing (∗) (without the initial condition) as an

infinite-dimensional dynamical system in the Hilbert space L2(0, 1), we also demonstrate that for a

given periodic boundary forcing with small amplitude, the system (∗) admits a (locally) unique limit

cycle, or forced oscillation, which is locally exponentially stable. A list of open problems are included

for the interested readers to conduct further investigations.
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1 Introduction

In this paper we consider an initial-boundary-value problem (IBVP) of the Korteweg-de
Vries (KdV) posed on the finite interval (0, 1), namely,

{
ut + ux + uux + uxxx = 0, u(x, 0) = φ(x), 0 < x < 1, t > 0,

u(0, t) = h(t), u(1, t) = 0, ux(1, t) = 0, t > 0.
(1)

Guided by the outcome of laboratory experiments, interest is given to long time effect of the
boundary forcing h and large time behavior of solutions of IBVP (1).

In the experiments of Bona, Pritchard and Scott[1], a channel partly filled with the water
mounted with a flap-type wave maker at one end. Each experiment commenced with the water
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in the channel at rest. The wavemaker was activated and underwent periodic oscillations.
The throw of the wavemaker and its frequency of oscillation was such that the surface waves
brought into existence were of small amplitude and long wavelength, so it can be modeled by
either Benjamin-Bona-Mahoney (BBM) type equation posed in a quarter plane:

{
ut + ux + uux − uxxt − αuxx − γu = 0, x > 0, t > 0,

u(x, 0) = 0, u(0, t) = h(t), x ≥ 0, t ≥ 0,
(2)

or the Korteweg-de Vries (KdV) type equation posed in a quarter plane:
{

ut + ux + uux + uxxx − αuxx − γu = 0, x > 0, t > 0,

u(x, 0) = 0, u(0, t) = h(t), x ≥ 0, t ≥ 0,
(3)

where α and γ are nonnegative constants that are proportional to the strength of the damping
effect. The wavemaker is modeled by the boundary value function h = h(t) which is assumed
to be a periodic function of period τ .

It was observed in the experiments that at each fixed station down the channel, for example
at a spatial point represented by x0, that the wave motion u(x0, t), say, rapidly became periodic
of the same period as the boundary forcing. This observation leads to the following conjecture
for solutions of IBVPs (2) and (3).

Conjecture If the boundary forcing h is a periodic function of period τ , then the solution
u of IBVP (2) or IBVP (3) becomes eventually time-periodic of period τ , i.e.,

lim
t→∞

‖u(·, t + τ)− u(·, t)‖L2(R+) = 0.

Furthermore, the following mathematical questions arise naturally which are important from
the point of view of dynamical systems.

Questions Assume the boundary forcing h is a periodic function (of period τ).
1) Does the equation in (2) or (3) admit a time periodic solution u(x, t) of periodic τ satis-

fying the boundary condition ? Such a time-periodic solution, if exists, is usually called a
forced oscillation.

2) If such a time periodic solution exists, how many are there ?
3) What are their their stability if those forced oscillations exist ?
In [3], Bona, Sun and Zhang studied the KdV type equation (3). Assuming the damping

coefficient γ > 0, they showed that if the the amplitude of the boundary forcing h is small, then
the solution u of (3) is asymptotically time-periodic satisfying

‖u(·, t + τ)− u(·, t)‖L2(R+) ≤ Ce−βt for any t ≥ 0,

where C and β are two positive constants. In addition, they demonstrated that the equation in
(3) admits a unique time-periodic solution u∗(x, t) of period τ satisfying the boundary condition,
which is shown to be globally exponentially stable in the space Hs(R+) with s ≥ 1, i.e., for a
given initial data φ ∈ Hs(R+), the unique solution u(x, t) of (3) with zero initial data replaced
by φ(x) has the property

‖u(·, t)− u∗(·, t)‖Hs(R+) ≤ Ce−βt for any t ≥ 0,

where C > 0 is a constant depending only on ‖φ‖Hs(R+). Later, the BBM type equation (3)
was studied by Yang and Zhang[18]. The similar results have been established while assuming
that both damping coefficients α and γ are greater than 0.
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Earlier, the same problems had been studied by Zhang for the BBM equation[19] and the
KdV equation[20] posed on the finite interval (0, 1):





ut + ux + uux − uxxt − αuxx − γu = 0, 0 < x < 1, t > 0,

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = h(t), u(1, t) = 0 t ≥ 0,

(4)

and 



ut + ux + uux + uxxx − αuxx − γu = 0, x > 0, t > 0,

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = h(t), u(1, t) = 0, ux(1, t) = 0, t ≥ 0.

(5)

Assuming either α > 0 or γ > 0, Zhang[19,20] showed that if the boundary forcing h is a periodic
function of period τ with small amplitude, then both solutions of the IBVPs (4) and (5) are
asymptotically time periodic (of period τ). Moreover, both equations admit a unique time
periodic solution satisfying the boundary conditions which is globally exponentially stable.

In the above cited works, they all require that the damping coefficients α and γ are greater
than zero, or at least one of them is greater than zero. It would be interesting to see whether the
results reported in those works still hold when both damping coefficients α and γ are zeros. This
leads us to consider the IBVP (1) of the KdV equation posed on the finite interval (0, 1). We
will show, though there is no explicit damping term in the equation, the solution u of the IBVP
(1) is asymptotically time-periodic if the boundary forcing h is periodic with small amplitude
and the initial date φ is small in certain space. We will also demonstrate that for a given small
amplitude, time-periodic boundary forcing h, the equation in (1) admits a (locally) unique
time-periodic solution u∗ satisfying the boundary conditions. Such a time-periodic solution
is called forced oscillation or a limit cycle if we view (1) (without the initial condition) as an
infinite-dimensional dynamical system in the Hilbert space L2(0, 1). This time-periodic solution
will be shown to be locally exponential stable in the space L2(0, 1).

2 Preliminaries

In this section we first consider the following IBVP of the linear KdV equation with homo-
geneous boundary conditions:

{
ut + ux + uxxx = 0, u(x, 0) = φ(x), 0 < x < 1, t > 0,

u(0, t) = u(1, t) = ux(1, t) = 0.
(6)

Its solution u can be written in the form

u(x, t) = W (t)φ,

where W (t) is the C0-semigroup in the space L2(0, 1) generated by the operator

Af = −f ′ − f ′′′

with its domain D(A) = {f ∈ H3(0, 1); f(0) = f(1) = f ′(1) = 0}. The operator A has the
following spectral properties:
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i) The spectrum σ(A) of operator A consists of only countably many eigenvalues {λk}∞k=1

satisfying
Reλk ≤ 0 and lim

k→∞
Reλk = −∞;

ii) iµ ∈ %(A), the resolvent set of A, for any µ ∈ R;
iii) The eigenvalues, λk, k = 1, 2, · · · , has the following asymptotic form

λk = − 8π3

3
√

3
k3 + O(k2). (7)

Moreover, the resolvent operator R(λ,A) of A has the following asymptotic estimate as λ
tends to ∞ along the pure imaginary axis:

‖R(iω, A)‖ = O
(|ω|− 2

3
)
, |ω| → ∞. (8)

Consequently, W (t) is a differential semigroup and there exists a β > 0 such that

‖W (t)φ‖L2(0,1) ≤ C‖φ‖L2(0,1)e
−βt

for any t ≥ 0, where C > 0 is a constant independent of φ and t. For given T > 0 and t > 0,
let Yt,T be the space

Yt,T =
{
v ∈ Cb(t, t + T ;L2(0, 1))| v ∈ L2(t, T + t;H1(0, 1))

}
,

which is a Banach space equipped with the norm

‖v‖Yt,T
≡ sup

t≤t′≤t+T
‖v(·, t′)‖L2(0,1) + ‖v‖L2(t,t+T ;H1(0,1)).

Using the standard energy estimate method, one can show that the following estimate holds
for solutions of IBVP (6).

Proposition 2.1 Let T > 0 be given. For any φ ∈ L2(0, 1), the unique solution u of (6)
belongs to the space Yt,T for any t ≥ 0. Moreover, there exists constants C > 0 and β > 0 such
that

‖u‖Yt,T
≤ C‖φ‖L2(0,1)e

−βt for any t > 0.

This result can be extended to the IBVP’s linearized KdV equation with a variable coeffi-
cient: {

ut + ux + (au)x + uxxx = 0, u(x, 0) = φ(x), 0 < x < 1, t > 0,

u(0, t) = u(1, t) = ux(1, t) = 0,
(9)

where a = a(x, t) is a given function. For given T > 0, let YT be the space

YT =
{

f(x, t)| f ∈ Yt,T for any t ≥ 0; sup
t≥0

‖f‖Yt,T
< +∞

}
.

The space YT is a Banach space equipped with the norm

‖f‖YT
≡ sup

t≥0
‖f‖Yt,T

.

The following proposition will play important roles in studying nonlinear KdV equation in the
next section.
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Proposition 2.2 Let W (t) be the semigroup introduced earlier and T > 0 be given such
that Q = W (T ) satisfying ‖Q‖ < 1, where ‖Q‖ denotes the operator norm of Q. Then there
exist constants µ > 0 and β > 0 such that if a ∈ YT and ‖a‖YT

≤ µ, then (9) admits a unique
solution u ∈ YT . Moreover

‖u‖Yt,T
≤ Ce−βt‖φ‖L2(0,1)

for any t ≥ 0, where C > 0 is a constant independent of t and φ.
Finally we consider nonhomogeneous boundary value problem





ut + ux + uxxx = 0, u(x, 0) = φ(x),

u(0, t) = h(t), u(1, t) = ux(1, t) = 0.
(10)

The following estimate holds for its solutions.
Proposition 2.3 There exist constant C > 0 and β > 0. If h ∈ C1

b (R+), then

‖u‖Yt,T
≤ C

(
e−βt‖φ‖L2(0,1) + ‖h‖C1

b
(R+)

)

for any t ≥ 0. If, in addition, there exists a δ1 > 0 such that |h(t)| + |h′(t)| ≤ Ce−δ1t for any
t ≥ 0, then

‖u‖Yt,T
≤ C

(
e−βt‖φ‖L2(0,1) + e−δ1t

)

for any t ≥ 0.

3 Main Results

In this section we first consider long time behavior of solutions of the nonlinear system
{

ut + ux + uux + uxxx = 0, u(x, 0) = φ(x),

u(0, t) = h(t), u(1, t) = ux(1, t) = 0.
(11)

Here we assume that the boundary forcing h ∈ C1
b (R+), but is not necessary a periodic function.

The following result is an extension of Proposition 2.3.
Theorem 3.1 Suppose that T > 0 is as given in Proposition 2.1. Then there exist δj > 0,

j = 1, 2 and β > 0 such that if h ∈ C1
b (R+) satisfying

‖φ‖L2(0,1) + ‖h‖C1
b
(R+) ≤ δ1,

then the corresponding unique u(x, t) of (11) satisfies

‖u‖Yt,T
≤ C

(‖φ‖L2(0,1)e
−βt + ‖h‖C1

b
(R+)

)

where C > 0 is independent of φ and h. If, in addition,

‖h‖C1
b
(t,t+T ) ≤ Ce−δ2t

for any t ≥ 0, then
‖u‖Yt,T

≤ C
(‖φ‖L2(0,1)e

−βt + e−δ2t
)

(12)

for any t ≥ 0.
Note that (12) implies that

‖u(·, t)‖L2(0,1)) ≤ C1e
−β∗t for any t ≥ 0,
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where β∗ = min{β, δ1}.
Now we assume that h is a periodic function of period τ . For a given initial value φ ∈ L2(0, 1),

let u(x, t) is the corresponding solution and w(x, t) = u(x, t + τ)− u(x, t). Then w(x, t) solves
the following IBVP:

{
wt + wx + wxxx + (a(x, t)w)x = 0, w(x, 0) = φ∗(x),

w(0, t) = w(1, t) = wx(1, t) = 0
(13)

where a(x, t) = 1
2 (u(x, t + τ) + u(x, t)) and φ∗(x) = u(x, τ)− φ(x).

According to Theorem 3.1, for a given µ > 0, there exists a δ > 0 such that if ‖φ‖L2(0,1) +
‖h‖C1(0,τ) ≤ δ, then a ∈ YT and ‖a‖YT

≤ µ. The following theorem, which provides an
affirmative answer for Problem 1 listed in the introduction, then follows from Proposition 2.2.

Theorem 3.2 Assume that h ∈ C1
b (R+) is periodic function of period τ . There exist β > 0

and δ > 0 such that if ‖φ‖L2(0,1) + ‖h‖C1(0,τ) ≤ δ, then the corresponding solution u of (11)
satisfies

‖u(·, t + τ)− u(·, t)‖L2(0,1) ≤ Ce−βt for any t ≥ 0

where C > 0 is a constant depending only on δ.
Next our attention is turn to the pure boundary value problem

{
ut + ux + uux + uxxx = 0,

u(0, t) = h(t), u(1, t) = ux(1, t) = 0.
(14)

The boundary forcing h is now assumed to be periodic with period τ . We are concerned with
whether or not this periodic forcing generates a time-periodic solution of (14).

Theorem 3.3 There exists a δ > 0 such that if h ∈ C1
b (R+) is a time-periodic function of

period τ satisfying ‖h‖C1(0,τ) ≤ δ, then (14) admits a solution

u∗ ∈ Cb(0,∞;L2(0, 1)) ∩ L2
loc(0,∞;H1(0, 1)),

which is a time-periodic function of period τ . In addition, there exist a η > 0 such that if
u∗1 ∈ Cb(0,∞;L2(0, 1)) ∩ L2

loc(0,∞;H1(0, 1)) is a time-periodic solution of (14) and

‖u∗(·, 0)− u∗1(·, 0)‖L2(0,1) ≤ η,

then u∗(x, t) ≡ u∗1(x, t) for any x ∈ (0, 1) and t ≥ 0.
The Sketch of the Proof Choose φ ∈ L2(0, 1) and solve IBVP (11) to get the corresponding

solution u. Let w(x, t) = u(x, t + τ) − u(x, t) for any t ≥ 0. Then w solves IBVP (13). It can
be shown that there exist T > 0, δ > 0, and β > 0 such that if ‖φ‖2(0,1) + ‖h‖C1(0,τ) ≤ δ, then

‖w‖Yt,T
≤ Ce−βt‖φ∗‖L2(0,1) for any t ≥ 0.

With this fact in hand, we can show that (14) possesses a time-periodic solution of period τ .
Let un = u(x, nτ) for n ≥ 1. For any positive integers n and m,

‖un+m − un‖L2(0,1) =

∥∥∥∥∥
m∑

k=1

un+k − un+k−1

∥∥∥∥∥
L2(0,1)

≤
m∑

k=1

‖w(·, (n + k − 1)τ)‖L2(0,1)

≤ Ce−nτ

1− e−τ
‖φ∗‖L2(0,1)
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for any m ≥ 1. Thus, {un} is a Cauchy sequence in L2(0, 1). Let ψ ∈ L2(0, 1) be the limit of
un as n → ∞. By Theorem 3.1, ‖ψ‖L2(0,1) ≤ Cδ. Taking ψ as an initial data together with
the boundary forcing h for IBVP (11), we claim that its solution u∗ is the desired time-periodic
solution of period τ .

Indeed, note that while un(·) = u(·, nτ) converges strongly to ψ and un+1(·) = u(·, nτ + τ)
converges strongly to u∗(·, τ) in L2(0, 1) as n →∞ because of the continuity of the associated
solution map. Observing that

‖u∗(·, τ)− u∗·, 0)‖L2(0,1)

≤ ‖u∗(·, τ)− u∗(·, nτ + τ)‖L2(0,1) + ‖u∗(·, nτ + τ)− u∗(·, nτ)‖L2(0,1)

+‖u∗(·, 0)− u∗(·, nτ)‖L2(0,1)

for any n ≥ 1, it is concluded that u∗(·, τ) = u∗(·, 0) in L2(0, 1) and therefore u∗ is a time-
periodic function of period τ .

To show the uniqueness, let u∗1 be another time-periodic solution with the same boundary
forcing. Let z(x, t) = u∗(x, t) − u∗1(x, t). Then z solves the IBVP (13) with a = u∗1 + u∗ and
φ∗(x) = u∗1(x, 0) − ψ(x). One can show that z decays exponentially in the space L2(0, 1) as
t →∞. Thus u∗1(·, t) = u∗(·, t) in the space L2(0, 1) for any t ≥ 0.

For a given periodic boundary forcing h of period τ , the IBVP (11) may be viewed as a
dynamic system in the infinite dimensional space L2(0, 1). It has been just proved that if the
amplitude of h is small, the equation in (11) admits a time-periodic solution u∗(x, t) of period
τ satisfying the boundary conditions in (11). Maintaining the dynamic systems perspective,
one may view u∗ as a limit cycle of the dynamic system. A natural further inquiry is then to
study the stability of this limit cycle.

Theorem 3.4 Under the assumption of Theorem 3.3, the time-periodic solution u∗ is
locally exponentially stable in the space L2(0, 1), which is to say, there exist θ > 0, γ > 0, and
C > 0 such that for any φ ∈ L2(0, 1) satisfying ‖φ(·) − u∗(·, 0)‖L2(0,1) ≤ θ, the corresponding
solution u of (11) satisfies

‖u(·, t)− u∗(·, t)‖L2(0,1) ≤ Ce−γt for any t ≥ 0.

Proof Let w(x, t) = u(x, t) − u∗(x, t). Then w solves the IBVP (13) with a(x, t) =
1
2 (u(x, t) + u∗(x, t)) and φ∗(x) = φ(x)− u∗(x, 0). Similar as before, one can show that

‖w(·, t)‖L2(0,1) ≤ C1‖φ∗‖L2(0,1)e
−γt

for any t ≥ 0 if φ(·) is close enough to u∗(·, 0) in the space L2(0, 1).

4 Conclusion Remarks

There have been many studies concerning with time-periodic solutions of partial differential
equations in the literature. Early work on this subject include for example, Brézis[5], Vejvoda
et. al[15], Keller and Ting[10] and Rabinowitz[13,14]. For recent theory, see Craig and Wayne[7]

and Wayne[17]. In particular, the interested readers are referred to article [17] in which Wayne
has provided a very helpful review of theory pertaining to time-periodic solutions of nonlinear
partial differential equations.

In this paper, motivated by laboratory experiments, we have studied the initial-boundary-
value problem of the KdV equation posed on the finite interval (0, 1):

{
ut + ux + uux + uxxx = 0, 0 < x < 1, t > 0,

u(x, 0) = φ(x), u(0, t) = h(t), u(1, t) = ux(1, t) = 0, 0 < x < 1, t > 0.
(15)
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We have proved that if the boundary forcing is periodic of small amplitude, then any solution
of (15) is asymptotically time periodic so long as the norm of its initial value φ in the space
L2(0, 1) is small. In addition, the equation in (15) admits a unique small amplitude time-
periodic solution satisfying the boundary conditions in (15), which is locally exponentially
stable in L2(0, 1).

We conclude the paper with a list of open questions with remarks for the interested readers
to conduct further investigations.

Open problems
1) The results presented in the paper for the IBVP (15) are local in the sense that both

amplitudes of the initial value and the boundary forcing are required to be small. In
particular, both uniqueness and existence of time-periodic solution as well as its stability
are local in nature. Do those results hold globally? In particular, is the small ampli-
tude time-periodic solution globally exponentially stable in the space L2(0, 1)? A more
challenging question is whether a periodic boundary forcing of large amplitude produce
a large amplitude time-periodic solution?

2) Study IBVP (4) of the BBM equation posed on the finite interval (0, 1) with both the
damping coefficients α = 0 and γ = 0, i.e.,

{
ut + ux + uux − uxxt = 0, 0 < x < 1, t > 0,

u(x, 0) = φ(x), u(0, t) = h(t), u(1, t) = 0, 0 < x < 1, t > 0.
(16)

If the boundary forcing h is a periodic function, does the equation in (16) admit a time-
periodic solution satisfying the boundary conditions. If such a time-periodic solution
exists, how many are there and what are their stability?
The interested readers should be reminded that while BBM equation is usually easier to
study mathematically than the KdV equation, it is the other way around, however, for
the problems proposed here. This is because the system described by IBVP (16) of the
BBM equation is conserved in the sense the H1−norm of its solution is conserved:

d

dt

∫ 1

0

(u2
t (x, t) + u2

x(x, t))dx = 0 for any t ≥ 0

if the boundary forcing h ≡ 0. By contrast, if the boundary forcing h ≡ 0, the small
amplitude solution of IBVP (15) of the KdV equation (with α = 0 and β = 0) decays
exponentially to zero in the space L2(0, 1). The system described by IBVP (15) possesses
a built-in dissipative mechanism through imposing the boundary condition at x = 0
although there is no damping term appeared in the equation. A different approach is
needed to study time-periodic solution of system (16).

3) Study the following IBVP of the KdV type equation posed on the half line R+:
{

ut + ux + uux + uxxx − αux − γu = 0, 0 < x, t < ∞,

u(x, 0) = φ(x), u(0, t) = h(t), 0 < x, t < ∞,
(17)

where α ≥ 0 and γ ≥ 0 are constants.
As we have pointed out in the introduction, Bona, Sun and Zhang[3] have shown that if the

damping coefficient γ > 0 and the boundary forcing is periodic with small amplitude, then
system (17) admits a unique amplitude time-periodic solution which is also globally exponen-
tially stable in the space Hs(R) with s ≥ 1. In their proof, the condition γ > 0 is crucial. A
question arises naturally what will happen if γ = 0? A more challenging case is when both
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damping coefficients α and γ are zero.
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